Benefiting From Bedside Specimen Labeling
Executive Summary

Labeling blood and other samples at the time they are collected improves patient safety and helps prevent a host of problems related to misidentification—including many of the estimated 160,900 adverse events that occur in U.S. hospitals annually because of sample identification errors. There is a strong and growing body of evidence within medical literature that creating specimen identification labels on demand at the patient bedside with a mobile printer can significantly reduce errors. The Joint Commission’s National Patient Safety Goals (NPSG) for 2010 advocate the use of two patient-specific identifiers, such as name and birthdate, whenever taking blood or other samples from a patient, and to label the sample collection container in the presence of the patient. Producing specimen labels at the patient bedside and encoding patient identification in a bar code satisfies both The Joint Commission’s NPSG and Health Insurance Portability and Accountability Act (HIPAA) requirements. This white paper explains the point-of-care specimen labeling process, documents its benefits, outlines equipment and IT requirements, and provides tips for successful implementation.

Identifying the Problem and Opportunity

Improved patient safety and care are the main reasons to implement mobile specimen collection labeling. Misidentified samples create a serious risk to patient safety by leading to misdiagnosis and inappropriate treatment. In fact, one of the root causes of wrong site surgery is the switching, mislabeling or incorrect display of test specimens or results, which accounts for 12 percent of wrong site surgeries annually. The case of Linda McDougal, a Wisconsin woman who underwent an unnecessary double mastectomy because her biopsy sample had been confused with another, drew national attention to the problem of sample identification errors and their consequences. McDougal’s experience is dramatic, but not isolated. According to one study, one in 18 sample identification errors leads directly to an adverse event.

Another study found 5.8 percent of phlebotomy samples are mislabeled. It is becoming increasingly clear that sample misidentification, which can lead to misdiagnosis, unnecessary treatment and wasteful tests, is a problem with serious patient safety consequences. There is also a significant financial impact. For example, it is estimated that the cost of misidentified specimens adds up to approximately $280,000 per million specimens. One study determined that the redraws, retesting and additional treatment required due to sample errors costs hospitals an estimated $200 to $400 million per year.

1, 4. Paul N. Valenstein, MD; Stephen S. Raab, MD; Molly K. Walsh, PhD “Identification Errors Involving Clinical Laboratories: A College of American Pathologists Q-Probes Study of Patient and Specimen Identification Errors at 120 Institutions,” Archives of Pathology and Laboratory Medicine: Vol. 130, No. 8, pp. 1106–1113.
Implementation Expectations for NPSG.01.01.01: Timely and accurate specimen labeling ensures the correct patient identification from collection through results reporting. The two identifiers may be in the same location, such as a wristband. It is the person-specific information that is the “identifier,” not the medium on which that information resides. Acceptable identifiers may be the individual’s name, an assigned identification number, telephone number, or other person-specific identifier. The patient’s room number or physical location is not used as an identifier. Electronic identification technology coding, such as bar coding or RFID, that includes two or more person-specific identifiers will comply with this requirement.

Preventing Errors with Point-of-Care Labeling

There are three essential components to a successful point-of-care labeling system: a mobile computer (which may include a bar code reader) that provides access to real-time draw orders and patient records; a printer that can be conveniently used at the patient bedside; and label media that will remain affixed to the sample container throughout all testing and storage processes.

While wireless network coverage is not strictly required for bedside specimen labeling, wireless technology has become increasingly prevalent in today’s hospitals, making the bedside specimen labeling process easier and more efficient. With wireless connectivity, phlebotomists and other caregivers get real-time notification of cancellations, new test requests, patient moves and other changes. The result is a reduction in unnecessary procedures and trips to the central lab for assignment updates. Wireless connectivity also enables activity performed at the point of care to be instantly recorded in the patient’s electronic medical record or other clinical system.

Bar coded patient wristbands are not required for point-of-care labeling, but can significantly enhance error reduction by facilitating a convenient, accurate positive patient identification. Joint Commission compliance requires that at least two patient identifiers be used whenever blood samples are taken and medications or blood products are administered. A bar-coded wristband can provide two forms of identification in one easy-to-access place by encoding the patient name and medical record number.

Here’s how a typical bedside specimen labeling procedure works. Draw orders are downloaded to mobile computers that are issued to the nurses or phlebotomists who collect the specimen sample. At the bedside, the patient is identified, ideally by bar code scanning. The patient ID is matched against a draw order on the mobile computer to verify that a sample is required and the correct patient is being tested. Confirmation can come from checking a record stored in the mobile computer, or through a wireless network connection to a central patient record system. After receiving instant confirmation of the patient identification and sample order, the sample is collected. The mobile computer or network immediately directs the printer to produce an ID label, which is applied to the sample container. Printing labels on-demand, one-at-a-time virtually eliminates the possibility of applying the wrong label to the specimen.

Bedside Labeling in Practice

Hamilton Medical Center in Dalton, Ga., uses an automated phlebotomy specimen collection system much like the one described above. The 282-bed hospital, which handles more than 1,000 specimen labels per day, implemented the system because it wanted to require two patient identifier checks prior to sample collections, ensure that samples were labeled accurately and give phlebotomists accurate test request information at the time of draw.

The staff of 23 phlebotomists uses wireless handheld computers and mobile printers to manage collection rounds and ensure accurate identification of patients and proper labeling of samples at the bedside. Once the phlebotomist has scanned the patient’s wristband, a label containing the patient’s information, sample collection time and clinician information is automatically generated by the mobile printer. A record of the collection is stored in the system’s database, providing an audit trail of the process and enabling Hamilton to produce management reports detailing specimen turnaround time and workloads.
As expected, the system has produced highly accurate sample identification and a reduction in redraws. Automating specimen collection at the bedside has also resulted in significant time savings for phlebotomists and laboratory management. In fact, Hamilton Medical Center reported that the system saves each phlebotomist an average of 45 minutes per day. Computerized management reduces the number of variables that phlebotomists have to deal with at the patient bedside, resulting in faster collections. Turnaround times at Hamilton have decreased from 3 percent to 59 percent, depending on the test required.13

In addition, new draw orders can be communicated instantly to the handheld computers, so phlebotomists do not need to return to the central lab to get assignments. Wireless communication helps make phlebotomists more productive and saves valuable time.

### Bedside Labeling Essentials—Printers and Labels

The specimen label produced at the bedside is the crucial link between the benefits of automated management systems and real-world processes. There can be no specimen accuracy and patient safety benefits without durable labels and consistently excellent print quality. Label readability is the most important criteria when selecting a printer for specimen labeling. Bar codes, text and graphics must be clear and long lasting to provide accurate identification from the time of collection through to final disposal or storage. In addition, printers should be fast enough to produce labels on-demand without inconveniencing the phlebotomist.

Printer ease-of-use is also important. Mobile printers can be worn on belts or shoulder straps, and can also be mounted on carts. Weight becomes an important consideration if the printers will be carried or worn. So does the ability of the printer to perform after being dropped on the floor multiple times. When evaluating printers, it is important to check specification sheets for printer drop ratings. It is also essential to evaluate user-friendliness by observing how easy it is to access printer controls, check indicators and change media during normal printer operation.

Mobile printers can connect directly to hospital wireless networks, which enables draw orders to be sent directly from a laboratory information management system or other central application. If wireless printers are used, they should support the same security protocols used for mobile computers.

Because exceedingly high bar code scan rates are essential to the success of specimen identification, thermal printing technology is an excellent option for specimen labeling. Thermal is the leading technology for bar code labeling applications because of its print quality and suitability for use in many challenging environments. To appreciate the benefits that thermal printing has over laser printing for bar code label production, it’s essential to have a basic understanding of bar code symbols and how each print technology produces them. Scanners decode the information from bar codes by measuring the differences between narrow and wide elements, and the contrast between dark bars and light spaces. If the ratios or contrast are slightly off, the bar code may be difficult or impossible to read, or may be read incorrectly. It should be noted here that when clinicians are unable to get an accurate scan, they often think the fault lies with the bar code scanner rather than with the label. However, the majority of bar code misreads are the result of problems related to the print quality of the bar code found on the label.

---

13. Margaret Herrin, Kenneth Lowery, Larry Early and John Forrester, Hamilton Medical Center; Sandra Trakowski, Mary Wojcik, Care Fusion Inc. “Hamilton Medical Center Finds That Deployment of a Positive Patient Identification (PPID) Specimen Collection Solution Improves Both Patient Safety and Work Flow Processes.”
Appropriate printers and supplies greatly reduce the chances of these problems occurring, and thus are important contributors to patient safety. The following sections outline the advantages and disadvantages of print technologies commonly used for specimen labeling.

**Thermal**

Thermal printing is classified as either direct thermal or thermal transfer. The two technologies are suited to different applications. Direct thermal printers create images by using a printhead to apply heat to selected areas directly to the chemically treated label material. No ribbon or ink is required. In thermal transfer printing, the printhead heats a ribbon, which melts the image to the material. Thermal transfer is used for high durability, long-lasting labeling applications, whereas direct thermal printing is the technology of choice for most specimen labeling applications. Direct thermal technology has many advantages and a few limitations.

- Direct thermal printing produces sharp print quality with good readability.
- Direct thermal printers are simple to operate compared to most other print technologies, with no ink, toner or ribbon to monitor and replenish.
- Because direct thermal printers don’t use ribbons, they protect patient privacy, which helps comply with HIPAA requirements.
- With no supplies to replace other than the material to be printed, long-term maintenance costs and total cost of ownership remain low.
- Direct thermal technology enables batch or single label printing with virtually no waste.
- With recyclable materials available, direct thermal printers offer environmental economy.
- Direct thermal printers are available in portable models that can be carried or worn by staff.
- Direct thermal printers can produce chemical- and water-resistant labels and images.
- Direct thermal printing is sensitive to environmental conditions such as heat and light, and long-term exposure to fluorescent light can reduce bar code quality. However, top coated media is available to mitigate these effects, and direct thermal labels are usually fully capable of meeting specimen labeling needs.
- Thermal printers accept roll or cartridge media but are unable to print 8 1/2- by 11-inch documents.

**Laser**

- Laser printers are good at producing bar codes on plain-paper documents.
- They can print high-quality text and graphics on paper documents and can double as a document printer when not being used to print bar codes.
- Bar code density and resolution are also quite high on laser printers, resulting in high-quality symbols. However, not all laser printers are able to produce crisp bar codes with adequate contrast between the dark and light edges. In addition, the ink can smear, resulting in blurry images and possible bar code misreads.
- Laser printers can be wasteful because they cannot produce single or small labels. A minimum of half a page of label media is typically required for the printer to maintain control of the sheet. Unless the label is at least that size or multiple labels are needed at once, the remainder is wasted.
• Laser printer label adhesives must be carefully selected to ensure stability under the heat and pressure of the fuser. Otherwise, the adhesive may seep onto the printer mechanism, where it will capture stray toner, or may cause the labels to curl at the edges.

• Because of the pressures used in the image transfer process, many laminated label materials are not compatible with laser printing. Those materials that are compatible may not always be available in the sheet form necessary for laser printing.

• A laser-printed paper label has limited durability. Laser printers cannot produce chemical- or water-resistant labels and images.

• With laser printers, toner, drum and supply costs increase significantly when printing bar codes instead of typical text. While plain text printing requires only about 5 percent black toner, bar codes can require more than 30 percent black toner to ensure proper contrast between dark and light elements. Toner costs alone could be six times higher when printing bar codes rather than text.

• Laser printers are too large to be carried or worn. They require a cart and a plug-in power supply.

For more information about the merits and limitations of different print technologies, see Zebra’s white paper, Evaluating Print Options for Hospital Bar Code Labeling, available free at www.zebra.com/healthcare.

Label Quality Matters

Label media works in concert with the printer and is a major variable in image quality and durability. The finished label includes a substrate material, adhesive and, often, a protective coating. Each element must be carefully selected for the specific usage environment and checked for compatibility with the specific make and model of mobile printer. Otherwise, print quality and longevity problems can result.

It’s fairly easy to find substrate, coating and adhesive combinations that work well at the bedside. The challenge is finding label media that will maintain excellent print quality throughout the life of the sample and withstand all test and storage conditions, even if exposed to blood, water, xylene, disinfectants, hand sanitizers and UV light.

General-purpose, commodity-type labels may seem suitable because they can easily affix to the specimen container when the sample is taken. However, the labels may fall off if the adhesive isn’t specifically formulated to withstand cold storage, sterilization, centrifuge and other conditions. Even if the label remains on the container, the bar code and text may become unreadable if moisture causes smudges or tears, or if air pockets form between the container and the label.

Thermal printers are compatible with a variety of label materials engineered specifically for use in laboratory environments. For example, some labels are manufactured with invisible ink colors that can be activated by direct thermal printers on demand—enabling staff to create visual cues or highlight important information as needed. Hospitals and labs should consult with a supplies specialist when specifying specimen tracking labels, because of the many variables involved and the many product options available. For more information, see Zebra’s brief, The Do’s and Don’ts of Selecting Hospital Bar Code Labels and Wristbands, available free at www.zebra.com/healthcare.
Conclusion

Bar coding is a proven, accurate and reliable way to identify samples. Printing and applying specimen container identification labels at the point of care promotes patient safety by improving sample identification and reducing opportunities for errors to enter the process. It also satisfies The Joint Commission’s National Patient Safety Goal, and by encoding patient identifiers in a machine-readable bar code, protects patient privacy in accordance with HIPAA. Point-of-care labeling also saves time for phlebotomists, nurses and technicians who collect samples because they don’t have to return to the lab to pick up the labels, while streamlining workflow in the lab by eliminating the need for relabeling.

Zebra Technologies is a leading manufacturer of specialty thermal print solutions, including wireless, mobile, high-volume and wristband printers designed to meet the unique needs of the healthcare market. Zebra solutions help healthcare organizations reduce errors and increase productivity while protecting patient safety and privacy. Thermal print solutions from Zebra incorporate text, graphics, bar codes and/or RFID to produce the on-demand labels, tags, ID badges and wristbands at the heart of today’s patient safety initiatives. With the broadest product line, largest installed base and highest customer satisfaction ratings, Zebra printers and supplies are the preferred choice. Information about Zebra bar code, card and RFID products can be found at www.zebra.com/healthcare.